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The random Euclidean bipartite matching problem
Let Xi, Yi be i. i. d. uniformly distributed points (Xi)

n
i=1, (Yi)

n
i=1 on (0, 1)d

and consider the optimization problem

min
σ∈Sn

n∑
i=1

∣∣Xi − Yσ(i)∣∣γ .
Define the empirical measures

µn =

n∑
i=1

δXi , νn =
n∑
i=1

δYi .

Recall the Wasserstein distance:

W γ
γ (µn, νn) = inf

q∈Cpl

ˆ
|x− y|γ dq (x, y) ,

where Cpl is the set of coupling between µn and νn, namely the set of
measures on the product space with first marginal equals to µn and second
marginal equals to νn.

By Birkhoff’s theorem

W γ
γ (µn, νn) = min

σ∈Sn

n∑
i=1

∣∣Xi − Yσ(i)∣∣γ .



Macroscopic Behaviour
Idea: The typical distance is n−

1
d (points are spread as in a regular grid)

min
σ∈Sn

n∑
i=1

∣∣Xi − Yσ(i)∣∣γ ≈ n · n− γd .
Achtung: There are fluctuations! (CLT)

The asymptotic behaviour of Wγ(µn, νn) depends on the dimension d and for
γ ≥ 1 read as follows:

W γ
γ (µn, νn) ∼


n · n−

γ
2 for d = 1,

n ·
(
lnn
n

) γ
2 for d = 2,

n · n−
γ
d for d ≥ 3.

The critical dimension d = 2 has been firstly understood in the seminal paper
by Ajtai, Komlós and Tusnády (1983).

Thermodynamic limit: Consider [−L
2
, L

2
]d or TdL and throw Ld point into them,

so that the typical interpoint distance is 1. And let qL be the γ-minimal
coupling.
 Let L→∞.

Question: Which property should the limiting coupling q∞ satisfy?



The Poisson Point Process

The Poisson point process on Rd can be defined as a random variable taking
values on locally finite atomic measures

µ =
∑
i

δXi

such that for every k ≥ 1, for any disjoint Borel sets A1, . . . , Ak ⊆ Rd,
 the random variables µ (A1) , . . . , µ (Ak) are independent,

 the random variable µ (Ai) has a Poisson distribution of parameter |Ai| for
every i = 1, . . . , k.

Existence: Superposition argument. On Ω ⊆ Rd bounded, conditionally on
µ (Ω) = n, the measure µ Ω has the same law as the random measure

n∑
i=1

δXi ,

where (Xi)
n
i=1 are i. i. d. with uniform law on Ω.

Notation: I will often make use of the notation {X} to denote a Poisson point
process.



Motivation

Definition: Consider two Poisson point process {X} , {Y } in Rd and let T be a
bijection from {X} to {Y }. We call matching the triple ({X} , {Y } , T ).

Definition: A matching ({X} , {Y } , T ) is γ-minimal if for any finite subset
{Xi}ni=1 ⊂ {X} , {Yi}

n
i=1 = {T (Xi)}ni=1 ⊂ {Y }

n∑
i=1

|T (Xi)−Xi|γ = min
σ∈Sn

n∑
i=1

∣∣Xi − Yσ(i)∣∣γ .
Definition: a matching ({X} , {Y } , T ) is said to be stationary if the joint law
of ({X} , {Y } , T ) is invariant under the action of the additive group Zd

({X}, {Y }, T ) 7→ ({x+X}, {x+ Y }, T (· − x) + x) x ∈ Zd.

Question: (Peres 2002) For {X} , {Y } independent Poisson processes of
intensity 1 in R2, does there exist a stationary planar matching?

Question: (Holroyd 2009) For {X} , {Y } independent Poisson processes of
intensity 1 in R2, does there exist a stationary γ-minimal matching?



Motivation

Achtung: Infinite cost does not imply non existence.
Let d = 1, γ = 1

2
and let (Xi)

L
i=1, (Yi)

L
i=1 i. i. d. uniformly distributed on

[−L
2
, L

2
]

min
σ∈Sn

L∑
i=1

∣∣Xi − Yσ(i)∣∣ 12 ∼ lnL.

γ-minimal matchings for γ =∞
(top-left), γ = 1 (top-right), and
γ = −∞ (bottom).
Credits to Holroyd-Janson-Wästlund
2020.

Theorem (Holroyd-Janson-Wästlund
2020)
There exists a stationary γ-minimal
matching if

 d = 1, γ < 1;

 d = 2, γ < 1;

 d ≥ 3, γ <∞.



Our result

We are interested in the case γ = 2, d = 2.

Theorem (Huesmann-M.-Otto)
There exists no stationary, ergodic and 2-minimal matching ({X}, {Y }, T ) in
d = 2.

Idea of the proof: Contradiction argument. We argue by showing that
stationarity together with 2-minimality imply the following contradiction:

O(ln
1
2 R) ≤ 1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ o(ln
1
2 R).

Achtung: 2-minimality does not imply planarity. Let X1 = (0, c), X2 = (1, 0),
Y1 = (2, 0), Y2 = (3, c) then

X1

X2 Y1

Y2 X1

X2 Y1

Y2

cost of parallel matching = 10 cost of crossing matching = 2(4 + c2)



Proof in a nutshell
Step 1: Ergodic estimate

#
{
X ∈ (−R,R)d : |T (X)−X| � 1

}
≤ o(Rd).

Step 2: L∞-estimate

|T (X)−X| ≤ o(R) provided that X ∈ (−R,R)d,

Step 3: Harmonic approximation

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|2 ≤ O(lnR).

Step 4: Trading integrability against asymptotics.

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ o(ln
1
2 R).

Step 5: Lower bound

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≥ O(ln
1
2 R).



Step 2: L∞-estimate

Lemma
For every ε > 0 there exists a random radius r∗ <∞ a. s. such that for every
R ≥ r∗

|T (X)−X| ≤ εR provided that X ∈ (−R,R)2.

Idea: There are enough "good" points around X.

X1

X2
X3

X

(T (X)−X) · (Xi −X)

|Xi −X|
.
|T (Xi)−Xi|2

|Xi −X|
+ |Xi −X| . εR.



Step 3: Harmonic approximation

Aim: Improve the L∞-estimate to an L2-estimate of the local energy of the
type E(R) ≤ O(lnR).

Lemma
There exist a constant C and a random radius r∗ <∞ a. s. such that for every
R ≥ r∗ we have

E(R) =
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|2 ≤ C lnR.

What we know: From Step 2 we know that E(R) ≤ εR2.



Harmonic Approximation Theorem
Define the local energy

E(R) :=
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|2 .

Call µ =
∑
X∈(−R,R)2 δX and ν =

∑
Y ∈(−R,R)2 δY define the data term

D(R) :=
1

Rd
W 2

(−R,R)2(µ, nµ)+
R2

nµ
(nµ−1)2+

1

Rd
W 2

(−R,R)2(ν, nν)+
R2

nν
(nν−1)2,

where nµ =
#{X∈(−R,R)2}

4R2 , nν =
#{Y ∈(−R,R)2}

4R2 .

Theorem (Goldman-Huesmann-Otto)
For any 0 < τ � 1, there exist an ε := ε(τ) > 0 and a Cτ <∞ such that
provided for some R

1

R2
E(6R) +

1

R2
D(6R) ≤ ε

there exists a harmonic gradient field Φ such that

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X −∇Φ(X)|2 ≤ τE(6R) + CτD(6R),

sup
B2R

|∇Φ|2 ≤ Cτ (E(6R) +D(6R)) .



Application of the harmonic approximation
Idea: Splitting the sum.

Consider the contribution given by the points which are transported by large
distance

1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>Lτ

|T (X)−X|2

≤ 2

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X −∇Φ (X) |2

+
2

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>Lτ

|∇Φ(X)|2

≤ 2τ (1 + Cτ )E(6R) + 2Cτ (1 + τ)D(6R)︸ ︷︷ ︸
.lnR

.

This combines to
E (R) ≤ τE (6R) + Cτ lnR.

Iteration:

E(R) ≤ τkE(6kR) + Cτ

k−1∑
l=0

τ l lnR ≤ ε (36τ)k R2 + Cτ

k−1∑
l=0

τ l lnR.



Step 4: Upper bound

Lemma
For every ε > 0 there exists a random radius r∗ <∞ a. s. such that

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ ε ln
1
2 R.

Proof: We split again the sum into moderate and large transportation distance
and apply Cauchy-Schwarz:

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|

≤ 1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|≤L

|T (X)−X|

+
1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>L

|T (X)−X|

≤ CL+ ε
1
2E(R)

1
2 ≤ Cε

1
2 ln

1
2 R.



Conclusions

For γ = 2, d = 2 we proved the following:

Theorem
There exists no stationary, ergodic and 2-minimal matching ({X}, {Y }, T ) in
d = 2.

Our proof relies on the Harmonic Approximation Theorem that requires γ = 2.

Question: What if γ ≥ 1?
 Next step: there exists no stationary γ-minimal coupling if γ > 1.
 Problem: γ = 1 requires a different argument.



Thank you for the attention!


