There is no stationary cyclically monotone Poisson matching in $$2 \ensuremath{\mathsf{D}}$$

Francesco Mattesini

WWU Münster & MPI Leipzig

Stochastic Mass Transports

BIRS, 24 March 2022

Joint with M. Huesmann (WWU Münster) and F. Otto (MPI Leipzig)

FOR MATHEMATICS

The random Euclidean bipartite matching problem

Let X_i, Y_i be i. i. d. uniformly distributed points $(X_i)_{i=1}^n, (Y_i)_{i=1}^n$ on $(0, 1)^d$ and consider the optimization problem

$$\min_{\sigma \in S_n} \sum_{i=1}^n \left| X_i - Y_{\sigma(i)} \right|^{\gamma}.$$

Define the empirical measures

$$\mu_n = \sum_{i=1}^n \delta_{X_i}, \quad \nu_n = \sum_{i=1}^n \delta_{Y_i}.$$

Recall the Wasserstein distance:

$$W_{\gamma}^{\gamma}\left(\mu_{n},\nu_{n}\right) = \inf_{q \in \mathsf{Cpl}} \int |x-y|^{\gamma} \ dq\left(x,y\right),$$

where Cpl is the set of coupling between μ_n and ν_n , namely the set of measures on the product space with first marginal equals to μ_n and second marginal equals to ν_n .

By Birkhoff's theorem

$$W_{\gamma}^{\gamma}(\mu_n,\nu_n) = \min_{\sigma \in S_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^{\gamma}.$$

Macroscopic Behaviour

Idea: The typical distance is $n^{-\frac{1}{d}}$ (points are spread as in a regular grid)

$$\min_{\sigma \in S_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^{\gamma} \approx n \cdot n^{-\frac{\gamma}{d}}.$$

Achtung: There are fluctuations! (CLT)

The asymptotic behaviour of $W_{\gamma}(\mu_n, \nu_n)$ depends on the dimension d and for $\gamma \geq 1$ read as follows:

$$W_{\gamma}^{\gamma}(\mu_n,\nu_n) \sim \begin{cases} n \cdot n^{-\frac{\gamma}{2}} & \text{ for } d = 1, \\ n \cdot \left(\frac{\ln n}{n}\right)^{\frac{\gamma}{2}} & \text{ for } d = 2, \\ n \cdot n^{-\frac{\gamma}{d}} & \text{ for } d \geq 3. \end{cases}$$

The critical dimension d = 2 has been firstly understood in the seminal paper by Ajtai, Komlós and Tusnády (1983).

Thermodynamic limit: Consider $[-\frac{L}{2}, \frac{L}{2}]^d$ or \mathbb{T}_L^d and throw L^d point into them, so that the typical interpoint distance is 1. And let q_L be the γ -minimal coupling.

 \rightsquigarrow Let $L \rightarrow \infty$.

Question: Which property should the limiting coupling q_{∞} satisfy?

The Poisson Point Process

The Poisson point process on \mathbb{R}^d can be defined as a random variable taking values on locally finite atomic measures

$$\mu = \sum_{i} \delta_{X_i}$$

such that for every $k \geq 1$, for any disjoint Borel sets $A_1, \ldots, A_k \subseteq \mathbb{R}^d$,

- \rightsquigarrow the random variables $\mu\left(A_{1}
 ight),\ldots,\mu\left(A_{k}
 ight)$ are independent,
- \rightsquigarrow the random variable $\mu(A_i)$ has a Poisson distribution of parameter $|A_i|$ for every $i = 1, \dots, k$.

Existence: Superposition argument. On $\Omega \subseteq \mathbb{R}^d$ bounded, conditionally on $\mu(\Omega) = n$, the measure $\mu \sqcup \Omega$ has the same law as the random measure

$$\sum_{i=1}^n \delta_{X_i},$$

where $(X_i)_{i=1}^n$ are i. i. d. with uniform law on Ω .

Notation: I will often make use of the notation $\{X\}$ to denote a Poisson point process.

Motivation

Definition: Consider two Poisson point process $\{X\}, \{Y\}$ in \mathbb{R}^d and let T be a bijection from $\{X\}$ to $\{Y\}$. We call matching the triple $(\{X\}, \{Y\}, T)$.

Definition: A matching $({X}, {Y}, T)$ is γ -minimal if for any finite subset ${X_i}_{i=1}^n \subset {X}, {Y_i}_{i=1}^n = {T(X_i)}_{i=1}^n \subset {Y}$

$$\sum_{i=1}^{n} |T(X_i) - X_i|^{\gamma} = \min_{\sigma \in S_n} \sum_{i=1}^{n} |X_i - Y_{\sigma(i)}|^{\gamma}.$$

Definition: a matching $({X}, {Y}, T)$ is said to be stationary if the joint law of $({X}, {Y}, T)$ is invariant under the action of the additive group \mathbb{Z}^d

$$({X}, {Y}, T) \mapsto ({x + X}, {x + Y}, T(\cdot - x) + x) \quad x \in \mathbb{Z}^d.$$

Question: (Peres 2002) For $\{X\}, \{Y\}$ independent Poisson processes of intensity 1 in \mathbb{R}^2 , does there exist a stationary *planar* matching?

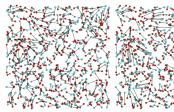
Question: (Holroyd 2009) For $\{X\}, \{Y\}$ independent Poisson processes of intensity 1 in \mathbb{R}^2 , does there exist a stationary γ -minimal matching?

Motivation

Achtung: Infinite cost does not imply non existence.

Let $d = 1, \gamma = \frac{1}{2}$ and let $(X_i)_{i=1}^L, (Y_i)_{i=1}^L$ i. i. d. uniformly distributed on $[-\frac{L}{2}, \frac{L}{2}]$

$$\min_{\sigma \in S_n} \sum_{i=1}^{L} |X_i - Y_{\sigma(i)}|^{\frac{1}{2}} \sim \ln L.$$



 γ -minimal matchings for $\gamma = \infty$ (top-left), $\gamma = 1$ (top-right), and $\gamma = -\infty$ (bottom). Credits to Holroyd-Janson-Wästlund 2020.

Theorem (Holroyd-Janson-Wästlund 2020)

There exists a stationary γ -minimal matching if

$$\rightsquigarrow d = 1, \gamma < 1;$$

$$\rightsquigarrow d = 2, \gamma < 1;$$

 $\rightsquigarrow d \geq 3, \gamma < \infty.$

Our result

We are interested in the case $\gamma = 2$, d = 2.

Theorem (Huesmann-M.-Otto)

There exists no stationary, ergodic and 2-minimal matching $({X}, {Y}, T)$ in d = 2.

Idea of the proof: Contradiction argument. We argue by showing that stationarity together with 2-minimality imply the following contradiction:

$$O(\ln^{\frac{1}{2}} R) \le \frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X| \le o(\ln^{\frac{1}{2}} R).$$

Achtung: 2-minimality does not imply planarity. Let $X_1 = (0, c), X_2 = (1, 0), Y_1 = (2, 0), Y_2 = (3, c)$ then

cost of parallel matching = 10 cost of crossing matching = $2(4 + c^2)$

Proof in a nutshell

Step 1: Ergodic estimate

$$\# \left\{ X \in (-R, R)^d : |T(X) - X| \gg 1 \right\} \le o(R^d).$$

Step 2: L^{∞} -estimate

$$|T(X) - X| \le o(R)$$
 provided that $X \in (-R, R)^d$,

Step 3: Harmonic approximation

$$\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X|^2 \le O(\ln R).$$

Step 4: Trading integrability against asymptotics.

$$\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X| \le o(\ln^{\frac{1}{2}} R).$$

Step 5: Lower bound

$$\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X| \ge O(\ln^{\frac{1}{2}} R).$$

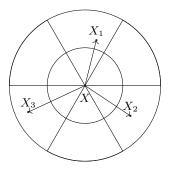
Step 2: L^{∞} -estimate

Lemma

For every $\varepsilon>0$ there exists a random radius $r_*<\infty$ a. s. such that for every $R\geq r_*$

 $|T(X) - X| \leq \varepsilon R$ provided that $X \in (-R, R)^2$.

Idea: There are enough "good" points around X.



$$(T(X) - X) \cdot \frac{(X_i - X)}{|X_i - X|} \lesssim \frac{|T(X_i) - X_i|^2}{|X_i - X|} + |X_i - X| \lesssim \varepsilon R.$$

Step 3: Harmonic approximation

Aim: Improve the L^{∞} -estimate to an L^2 -estimate of the local energy of the type $E(R) \leq O(\ln R)$.

Lemma

There exist a constant C and a random radius $r_* < \infty$ a. s. such that for every $R \geq r_*$ we have

$$E(R) = \frac{1}{R^d} \sum_{X \in B_R} \operatorname{or}_{T(X) \in B_R} |T(X) - X|^2 \le C \ln R.$$

What we know: From Step 2 we know that $E(R) \leq \varepsilon R^2$.

Harmonic Approximation Theorem

Define the local energy

$$E(R) := \frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X|^2 \,.$$

Call $\mu = \sum_{X \in (-R,R)^2} \delta_X$ and $\nu = \sum_{Y \in (-R,R)^2} \delta_Y$ define the data term

$$\begin{split} D(R) &:= \frac{1}{R^d} W^2_{(-R,R)^2}(\mu,n_{\mu}) + \frac{R^2}{n_{\mu}} (n_{\mu}-1)^2 + \frac{1}{R^d} W^2_{(-R,R)^2}(\nu,n_{\nu}) + \frac{R^2}{n_{\nu}} (n_{\nu}-1)^2, \\ \text{where } n_{\mu} &= \frac{\# \left\{ X \in (-R,R)^2 \right\}}{4R^2}, \ n_{\nu} &= \frac{\# \left\{ Y \in (-R,R)^2 \right\}}{4R^2}. \end{split}$$

Theorem (Goldman-Huesmann-Otto)

For any $0<\tau\ll 1$, there exist an $\varepsilon:=\varepsilon(\tau)>0$ and a $C_\tau<\infty$ such that provided for some R

$$\frac{1}{R^2}E(6R) + \frac{1}{R^2}D(6R) \le \varepsilon$$

there exists a harmonic gradient field Φ such that

$$\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X - \nabla \Phi(X)|^2 \le \tau E(6R) + C_\tau D(6R),$$
$$\sup_{B_{2R}} |\nabla \Phi|^2 \le C_\tau \left(E(6R) + D(6R) \right).$$

Application of the harmonic approximation

Idea: Splitting the sum.

Consider the contribution given by the points which are transported by large distance $% \left({{{\mathbf{x}}_{i}}} \right)$

$$\begin{split} &\frac{1}{R^d}\sum_{\substack{(X\in B_R \text{ or } T(X)\in B_R) \text{ and } |T(X)-X|>L_{\tau}}} |T\left(X\right)-X|^2 \\ &\leq \frac{2}{R^d}\sum_{\substack{X\in B_R \text{ or } T(X)\in B_R}} |T\left(X\right)-X-\nabla\Phi\left(X\right)|^2 \\ &+ \frac{2}{R^d}\sum_{\substack{(X\in B_R \text{ or } T(X)\in B_R) \text{ and } |T(X)-X|>L_{\tau}}} |\nabla\Phi(X)|^2 \\ &\leq 2\tau\left(1+C_{\tau}\right)E(6R)+2C_{\tau}\left(1+\tau\right)\underbrace{D(6R)}_{\lesssim \ln R}. \end{split}$$

This combines to

$$E(R) \le \tau E(6R) + C_{\tau} \ln R.$$

Iteration:

$$E(R) \le \tau^{k} E(6^{k} R) + C_{\tau} \sum_{l=0}^{k-1} \tau^{l} \ln R \le \varepsilon (36\tau)^{k} R^{2} + C_{\tau} \sum_{l=0}^{k-1} \tau^{l} \ln R.$$

Step 4: Upper bound

Lemma

For every $\varepsilon > 0$ there exists a random radius $r_* < \infty$ a. s. such that

$$\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X| \le \varepsilon \ln^{\frac{1}{2}} R.$$

Proof: We split again the sum into moderate and large transportation distance and apply Cauchy-Schwarz:

$$\begin{split} &\frac{1}{R^d} \sum_{X \in B_R \text{ or } T(X) \in B_R} |T(X) - X| \\ &\leq \frac{1}{R^d} \sum_{\substack{(X \in B_R \text{ or } T(X) \in B_R) \text{ and } |T(X) - X| \leq L}} |T(X) - X| \\ &+ \frac{1}{R^d} \sum_{\substack{(X \in B_R \text{ or } T(X) \in B_R) \text{ and } |T(X) - X| > L}} |T(X) - X| \\ &\leq CL + \varepsilon^{\frac{1}{2}} E(R)^{\frac{1}{2}} \leq C\varepsilon^{\frac{1}{2}} \ln^{\frac{1}{2}} R. \end{split}$$

Conclusions

For $\gamma = 2$, d = 2 we proved the following:

Theorem

There exists no stationary, ergodic and 2-minimal matching $({X}, {Y}, T)$ in d = 2.

Our proof relies on the Harmonic Approximation Theorem that requires $\gamma = 2$.

Question: What if $\gamma \ge 1$? \rightsquigarrow Next step: there exists no stationary γ -minimal coupling if $\gamma > 1$. \rightsquigarrow Problem: $\gamma = 1$ requires a different argument. Thank you for the attention!